Choose another country or region to see content specific to your location.

Conformal Coatings

Enhanced protection for enhanced PCB performance

An Electrolube brand conformal coating product on printed circuit board undergoing UV cure.
  • UL, MIL and IPC-CC-830 approved
  • Solvent removable and solvent resistance coatings
  • Acrylic, Silicone, Polyurethane and Hybrid Materials
  • UV cure and water-based options available
  • UV trace to aid inspection
  • Thinners and masking products

Conformal coatings are designed to protect printed circuit boards and related equipment from their environment. Typically applied at 25-75μm, these coatings ‘conform’ to the contours of the board allowing for excellent protection and coverage, ultimately extending the working life of the PCB.

More info > Download product selector chart > Download product brochure >

Electrolube is among the world’s foremost experts in the formulation and application of conformal coatings designed to meet international approvals (including European and American military specifications). The range of products currently available comprises acrylics, silicones, polyurethanes, hybrid chemistries and environmentally friendly options.

Electrolube can offer both transparent and pigmented coatings to improve or camouflage the appearance of printed circuit boards. The range also includes a number of ancillary products to complement the use of our conformal coatings, including thinners and removers, peelable coating masks and thixotropic materials for dam and fill applications.

Electrolubes Conformal Coatings Technical Director Phil Kinner recently wrote a micro e-book on conformal coatings for harsh environments. It’s a great little insight into the selection, implementation and testing of protective coating process.


More Information

Conformal Coating Curing Methods

Heat Cure Coating / Evaporation Cure Coating

Solvent based conformal coatings cure by evaporation of solvents, this process can be accelerated in most cases by using heat, however this can affect the properties of the coating and cause coating defects if not performed correctly. In the Case of Electrolube’s Silicone based DCA for example, if you heat cure you get additional chemical resistance and greatly improved properties. Without heat cure, it offers good humidity protection.

AFA, a non cross-linking solvent-based acrylic on the other hand, will reach the same protective capability regardless of the curing conditions, the use of heat just accelerates the process.

UV Cure Conformal Coating

UV curing uses intense ultraviolet light to set off a chemical reaction within the coating in order to cure almost immediately in areas exposed to the UV radiation. Due to the 3-D nature of most assemblies there will nearly always be areas that remain unexposed to the UV radiation (e.g. beneath components) and therefore a secondary cure mechanism is required. Moisture is the most common secondary initiation process since it does not require an additional process step, however formulations are available that use heat, although the cure times are relatively long (30 mins or more), and the temperatures are quite high (>120°C) which places additional thermal fatigue on the assembly.

UV curing materials are popular in high throughput environments, since in most cases the parts can continue through the process within seconds of the curing process, thus speeding up manufacturing velocity and reducing Work In Progress (WIP).

Moisture Cure Coatings

Moisture cure coatings require moisture from the atmosphere to cure. The humidity in the atmosphere can affect the speed of cure; increasing the humidity will often speed up the process. Humidifiers can be added to conventional and IR ovens to provide greater humidity and accelerate this process. It is important that these products are handled with care. If containers are left open for long periods of time then moisture will be absorbed and the coating will begin to cure.

  • In the case of dip coating a dry argon blanket can be passed over the surface of the tank to ensure that the coating is kept dry whilst processing